Государственное автономное образовательное учреждение среднего профессионального образования Свердловской области Екатеринбургский техникум «Автоматика»

Рекомендовано к реализации:

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине ОП.03 Техническая механика ОПОП по специальности 15.02.08 Технология машиностроения

Фонд оценочных средств предназначен для оценивания сформированных знаний и умений, как результата учебной дисциплины ОП.03 «Техническая механика», которая способствует формированию и развитию общих и профессиональных компетенций в соответствии с ФГОС СПО по специальности 151901 Технология машиностроения

Организация-разработчик: ГАОУ СПО СО ЕТ «Автоматика»

Разработчик: Пономарева Т.А., преподаватель ГАОУ СПО СО ЕТ «Автоматика»

Задачи учебной дисциплины – требования к результатам освоения дисциплины

В результате освоения учебной дисциплины обучающийся должен уметь:

- производить расчеты механических передач и простейших сборочных единиц;
- читать элементы кинематических схем;
- определять напряжения в конструкционных элементах.

В результате освоения учебной дисциплины обучающийся должен знать:

- основы технической механики;
- виды механизмов, их кинематические и динамические характеристики;
- методику расчета элементов конструкций на прочность, жесткость и устойчивость при различных видах деформации;
- основы расчетов механических передач и простейших сборочных единиц общего назначения.

Освоение учебной дисциплины способствует формированию и развитию следующих компетенций:

- ОК 01. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- **ОК 02.** Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество
- ОК 03. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность
- ОК 04. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития
- ОК 05. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 06. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями
- ОК 07. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий
- **ОК 08.** Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации
- ОК 09. Ориентироваться в условиях частой смены технологий в профессиональной деятельности
- ОК 10. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей)
- ПК 1.1. Использовать конструкторскую документацию при разработке технологических процессов изготовления деталей
- ПК 1.2. Выбирать метод получения заготовок и схемы их базирования
- ПК 1.3. Составлять маршруты изготовления деталей и проектировать технологические операции
- ПК 1.4. Разрабатывать и внедрять управляющие программы обработки деталей
- ПК 1.5. Использовать системы автоматизированного проектирования технологических процессов обработки деталей
- ПК 2.1. Участвовать в планировании и организации работы структурного подразделения
- ПК 2.2. Участвовать в руководстве работой структурного подразделения
- ПК 2.3. Участвовать в анализе процесса и результатов деятельности подразделения
- ПК 3.1. Участвовать в реализации технологического процесса по изготовлению деталей
- ПК 3.2. Проводить контроль соответствия качества деталей требованиям технической документации

Критерии по уровням деятельности с учетом всех формируемых компетенций по учебной дисциплине «Техническая механика»

Уровни деятельности	Критерии оценки	Методы оценки	Оцениваемые компетенции
Эмоционально- психологический	1. Демонстрация знания и понимания теории учебной дисциплины «Техническая механика» (выбирает правильный вариант ответа - тестовые задания с 1 по 20; формулирует определение, основное понятие - тестовые задания с 21 по 24)	Сопоставление с эталоном теста	ОК 1 - 10 ПК 1.1 - 3.2
Регулятивный	2. Определяет данные для расчета механических передач (выбирает правильный вариант ответа - тестовые задания с 41 по 45)	Сопоставление с эталоном теста	ОК 1 - 10 ПК 1.1 - 3.2
Социальный	3. Читает кинематические схемы (выбирает правильный вариант ответа - тестовые задания с 36 по 40)	Сопоставление с эталоном теста	ОК 1 - 10 ПК 1.1 - 3.2
Аналитический	4. Определяет напряжения в конструкционных элементах (выбирает правильный вариант ответа - тестовые задания с 25 по 35)	Сопоставление с эталоном теста	ОК 1 - 10 ПК 1.1 - 3.2
Самосовершенствования	5. Реализовывает полученные теоретические знания в решении практических заданий	Оценка по критериям	ОК 1 - 10 ПК 1.1 - 3.2

Требования к проведению дифференцированного зачета по учебной дисциплине «Техническая механика»

Этапность экзамена:

Нулевой этап

Организационный момент, ознакомление с инструкцией для обучающихся.

Основной (экзаменационный) этап

Выполнение теста

Заключительный этап

Сдача работ (бланков с ответами).

Таким образом, норма времени на проведение зачета – 1 урок 45 минут.

Требования к помещению: учебный класс должен быть оснащен рабочими местами для обучающихся

Требования к ресурсам: для проведения процедуры необходима бумага: распечатанные бланки для ответов, в которые обучающиеся будут вписывать ответы при выполнении тестовых заданий и решение практических задач. При тестировании обучающимся не разрешается пользоваться учебниками, справочными таблицами и конспектами.

Требования к кадровому обеспечению оценки

Оценщик (эксперт): преподаватель дисциплины «Техническая механика»

Информированность обучающихся о результатах зачета

Результаты зачета вписываются в бланк зачетной ведомости, которая сдается в учебную часть техникума, кроме того, результаты экзамена вывешиваются на доску объявлений для обучающихся. Обучающиеся, которые получили неудовлетворительную оценку, имеют право на пересдачу зачета.

Проверочная работа по разделу «Теоретическая механика»

ИНСТРУКЦИЯ для обучающихся к выполнению проверочной работы

Проверочная работа состоит из 2-х заданий, которые Вы должны выполнить в течение урока.

- При выполнении заданий Вам необходимо учитывать их особенности оценивания:
- 1) Каждый ответ задания №1 оцениваются от 0 до 2 баллов:
- 2 балла за полный правильный ответ;
- 1 балл за неполный (частичный) ответ;
- 0 баллов за неправильный ответ / за отсутствие ответа.

Количество баллов за задание №2 – от 0 до 20 баллов.

- 2) Каждый ответ задания №2 оцениваются от 0 до 2 баллов:
- 2 балла за полный правильный ответ;
- 1 балл за неполный (частичный) ответ;
- 0 баллов за неправильный ответ / за отсутствие ответа.

Количество баллов за задание №2 – от 0 до 16 баллов.

Набранные баллы за выполненные задания суммируются. Максимальное количество баллов за выполненные задания – 36 баллов.

Перевод количества баллов в оценку за выполнение проверочной работы

Количество баллов	Оценка
36 - 35	5 (отлично)
34 - 29	4 (хорошо)
28 - 25	3 (удовлетворительно)
менее 24	2 (неудовлетворительно)

Обучающиеся, получившие неудовлетворительную оценку, имеют право на пересдачу проверочной работы

Желаю успеха!

Задание №1. Ответьте на вопросы:

- Что называется абсолютно твердым телом?
- Какие системы сил называются эквивалентными?
- Чем отличаются активные силы от пассивных?
- Что такое главный вектор сил и чему он равен? Зависит ли главный вектор сил от выбора центра приведения?
- Имеет ли материальная точка ускорение при равномерном движении по криволинейной траектории?
- Могут ли точки тела, движущегося поступательно, иметь криволинейные траектории?
- Если пассажир идет в салоне в направлении полета, его скорость по отношению к Земле будет больше или меньше, чем скорость самолета?
- Какое движение будет совершать тело при сложении двух вращательных движений, у которых угловые скорости одинаковые, а направления разные?
- Чему равна работа силы тяжести? Зависит ли она от вида траектории точки приложения силы?
- Как определить центр тяжести грузовика?

Задание №2. Выполните указанные действия:

- Объясните принцип освобождения твердого тела от связей
- Запишите основные уравнения равновесия произвольной пространственной системы сил
- Запишите основной закон динамики
- Дайте определение коэффициента полезного действия. Для чего введено это понятие?
- Определите количество движения колеса весом G и радиусом R, катящегося по прямолинейному рельсу без скольжения с угловой скоростью ω .
- Определите при каком расположении вектора количества движения материальной точки его момент относительно оси будет равен нулю
- Поясните, при каких условиях кинетический момент механической системы относительно центра останется постоянным
- Поясните, почему для того чтобы остановиться быстро вращающийся на коньках фигурист раскидывает в стороны руки

Проверочная работа по разделу «Сопротивление материалов»

ИНСТРУКЦИЯ

для обучающихся к выполнению проверочной работы

Проверочная работа состоит из 3-х заданий, которые Вы должны выполнить в течение урока.

При выполнении заданий Вам необходимо учитывать их особенности оценивания:

- 3) Каждый ответ задания №1оцениваются от 0 до 1 балла:
- 1 балл за правильный ответ;
- 0 баллов за неправильный ответ / за отсутствие ответа.

Количество баллов за задание №1 – от 0 до 5 баллов.

- 4) Каждый ответ задания №2 оцениваются от 0 до 2 баллов:
- 2 балла за полный правильный ответ;
- 1 балл за неполный (частичный) ответ;
- 0 баллов за неправильный ответ / за отсутствие ответа.

Количество баллов за задание №2 – от 0 до 10 баллов.

- 5) Каждый ответ задания №3 оцениваются от 0 до 4 баллов:
- 4 балла за полный правильный ответ;
- 3 балла за правильный ответ с незначительной неточностью;
- 2 балла за неполный (частичный) ответ;
- 1 балл за неполный (частичный) ответ;
- 0 баллов за неправильный ответ / за отсутствие ответа.

Количество баллов за задание №3 – от 0 до 20 баллов.

Набранные баллы за выполненные задания суммируются. Максимальное количество баллов за выполненные задания – 35 баллов.

Перевод количества баллов в оценку за выполнение проверочной работы

Количество баллов	Оценка
35 - 33	5 (отлично)
32 - 29	4 (хорошо)
28 - 24	3 (удовлетворительно)
менее 24	2 (неудовлетворительно)

Обучающиеся, получившие неудовлетворительную оценку, имеют право на пересдачу проверочной работы

Задание №1. Ответьте на вопросы:

- Чем отличаются упругие деформации от остаточных деформаций?
- Что такое относительное удлинение?
- Что такое предел упругости?
- До какого напряжения справедлив закон Гука?
- По какому напряжению ведется расчет бруса, на который действуют одновременно изгибающий и крутящий моменты?

Задание №2. Перечислите:

- Эпюры, которые построить, чтобы выполнить расчет на прочность при растяжении
- Напряжения, которые возникают в поперечном сечении при кручении образца
- Внутренние силовые факторы, которые возникают в поперечном сечении бруса при его изгибе
- Напряжения, которые возникают в поперечном сечении при изгибе
- Строительные конструкции, при расчетах которых можно представить их в виде двухопорной балки

Задание №3. Выполните указанные действия:

- Запишите законы Гука при растяжении (сжатии) и для сдвига
- Приведите обозначения модуля упругости 1 рода и коэффициента Пуассона. Поясните, какая зависимость существует между модулем упругости 1 рода и модулем G
- Два бруса одинакового поперечного сечения подвергаются нагрузке, в результате чего возникают переменные напряжения с одинаковым коэффициентом асимметрии. Первый брус работает на изгиб, а второй на растяжение сжатие. У какого бруса раньше начнется усталостное разрушение
- Груз равноускоренно опускается на тросе вниз. Определите каково будет динамическое напряжение в поперечном сечении троса
- Напишите формулу, по которой рассчитывается критическое напряжение продольно сжатого стержня, если напряжение в поперечном сечении превышает предел пропорциональности

Инструкция для обучающихся по выполнению тестовых зачетных заданий

Для получения зачетной оценки по учебной дисциплине «Техническая механика» Вам предлагается выполнить тест.

Тест состоит из 45-ти тестовых заданий, которые необходимо выполнить согласно предложенным рекомендациям.

Каждый правильный ответ тестовых заданий с 1-го по 20-ое оценивается в 0,5 баллов.

Каждый правильный ответ тестовых заданий с 21-го по 45-ое оценивается от 0 до 1 балла:

- за неправильный ответ/отсутствие ответа 0 баллов;
- за частично правильный ответ 0,5 баллов;
- за правильный ответ 1 балл.

Баллы, полученные Вами за правильно выполненные тестовые задания, суммируются. Постарайтесь выполнить как можно больше тестовых заданий и набрать наибольшее количество баллов. Максимальное количество баллов за тест -35 баллов.

Выполненные тестовых заданий будет оцениваться по следующим критериям

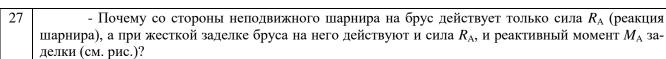
Задание	Критерии	Баллы
Тестовые задания	1. Демонстрация знания и понимания теории учебной дисциплины «Техническая механика» (выбирает правильный вариант ответа - тестовые задания с 1 по 20; формулирует определение, основное понятие - тестовые задания с 21 по 24) 2. Определяет данные для расчета механических передач (выбирает правильный вариант ответа - тестовые задания с 41 по 45)	от 0 до 10 от 0 до 4 от 0 до 5
	 3. Читает кинематические схемы (выбирает правильный вариант ответа - тестовые задания с 36 по 40) 4. Определяет напряжения в конструкционных элементах (выбирает правильный вариант ответа - тестовые задания с 25 по 35) 	от 0 до 5
	Количество баллов за тестовые задания	от 0 до 35
Дополни- тельные баллы	5. Реализовывает полученные теоретические знания в решении практических заданий	от 0 до 2
	Количество баллов за экзамен	от 0 до 37

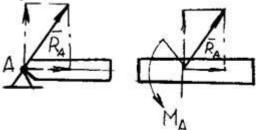
Перевод количества баллов в оценку за зачет

Количество баллов	Оценка
37 - 36	5 (отлично)
35 - 32	4 (хорошо)
31 - 27	3 (удовлетворительно)
менее 26	2 (неудовлетворительно)

На выполнение тестовых заданий даётся 4 пары по 45 минут.

Результаты экзамена вписываются в бланк экзаменационной ведомости, которая сдается в учебную часть техникума, кроме того, результаты экзамена вывешиваются на доску объявлений для обучающихся. Обучающиеся, получившие неудовлетворительную оценку, имеют право на пересдачу экзамена.

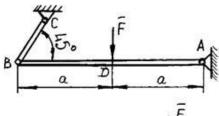

Желаем успеха!

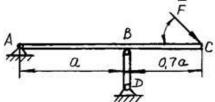

Тест для проведения зачета по учебной дисциплине «Техническая механика»

Ф.И.О._____

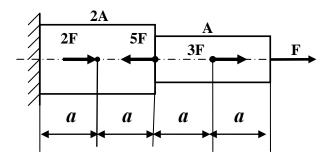
Вни	мательно прочитайте формулировки заданий, исключите лишнее	
1.	В связях перечисленных ниже, реакции всегда направлены по нормали к поверхности	
	1) гладкая плоскость;	
	2) гибкая связь;	
	3) жесткий стержень;	
	4) шероховатая поверхность.	
2.	Реакция опоры приложена	
2.	1) к самой опоре;	
	2) к опирающемуся телу.	
3.	Эффект действия пары сил определяет	
٥.	1) произведение силы на плечо;	
	2) момент пары и направление поворота.	
4.	Уравновесить пару сил можно	
٦.	1) одной силой;	
	2) парой сил.	
5.	Эффект действия пары сил на тела зависит от его положения в плоскости	
٥.	1) да;	
	1) да, 2) нет.	
6.	Пары эквивалентны	
0.	1) а) сила пары 100 кH, плечо 0,5 м; б) сила пары 20 кH, плечо 2,5 м; в) сила пары 1000 кH,	
	плечо 0,05 м. Направление всех трех пар одинаково.	
	(2) а) M_1 =-300 Hm; б) M_2 =300 Hm.	
	$2/a/M_1=300 \text{ HM}, 0/M_2=300 \text{ HM}.$	
Вни	мательно прочитайте формулировки заданий, выберите правильный вариант ответа	
7.	Значение и направление момента силы относительно точки от взаимного расположения этой точки	
	и линии действия силы	
	1) не зависит;	
	2) зависит.	
8.	Момент силы относительно оси равен нулю	
	1) когда силы параллельно оси;	
	2) когда линия действия силы пересекает ось;	
	3) Когда сила и ось расположены в одной плоскости.	
9.	Момент присоединенной пары сил от расстояния точки приведения до линии действия силы	
	1) зависит;	
	2) не зависит.	
10.	Значение и направление главного вектора от положения центра приведения	
	1) не зависит;	
	2) зависит.	
11.	Значение и знак главного вектора от положения центра приведения	
	1) не зависит;	
	2) зависит.	
12	Определить алгебраическую сумму моментов сил относительно некоторой точки O , если задана	
	ightarrow	
	только равнодействующая этих сил F_{Σ} и ее плечо a относительно этой точки	
	1) нельзя;	
	2) можно.	
13	Главный вектор отличается от равнодействующей плоской системы произвольно расположенных	
	сил?	
	1) величиной;	
	2) направлением;	
	3) величиной и направлением;	
	4) точкой приложения;	
	5) ничем.	

14	Формула закона Гука при растяжении (сжатии)
	1) $\tau = G\gamma$;
	2) $\sigma = E\varepsilon$;
	3) $\varepsilon = \sigma E$;
	4) $E = \sigma \varepsilon$.
15	При растяжении (сжатии) возникают внутренние усилия
10	1) поперечная сила,
	2) продольная сила.
16	Закон Гука при растяжении (сжатии) связывает
	1) продольную и поперечную силу,
	2) напряжение и деформацию.
17	Характеристикой жесткости при растяжении является
1,	1) модуль упругости первого рода,
	2) модуль упругости второго рода.
18	При расчетах на жесткость получают:
	1) гибкость стержня;
	2) твердость материала;
	3) линейные и угловые деформации.
19	В поперечном сечении при растяжении (сжатии) возникают напряжения
	1) сжимающие,
	2) касательные,
	3) продольные,
	4) нормальные,
	5) изгибающие.
20	Жесткость при растяжении (сжатии) характеризуется
	1) модуль упругости второго рода,
	2) модуль упругости первого рода,
	3) коэффициент Пуассона.
Вни	мательно прочитайте формулировки заданий, дополните в тесте недостающее определение
21	Раздел теоретической механики, в котором изучаются законы приведения и условия равновесия
	сил, действующих на материальные точки, называется
22	Тело, расстояние между двумя точками которого всегда остается неизменным, называется
23	Сила, с которой данная связь действует на тело, препятствуя тому или иному перемещению, назы-
23	вается
24.	Закон Гука определяет
Вни	мательно прочитайте формулировки заданий, выполните практическое задание
25.	Момент пары сил равен 100 Нм, плечо пары 0,2 м. Определить значении сил пары? Как изменится
23.	значение сил пары, если плечо увеличить в два раза при сохранении численного значения момен-
	Ta?
0.5	
26	Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в од-
	ной плоскости, и моменты этих пар имеют следующие значения: M_1 =-600 Hm; M_2 =320 Hm и M_1 =-200 Hm.
	M_3 =280 Hm.
	 тело будет находиться в равновесии; тело не будет находиться в равновесии.
	2) тело не оудет находиться в равновесии.

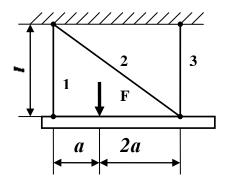


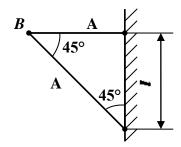

- Определить проекцию равнодействующей силы на ось у, если известны проекции каждого из слагаемых векторов:
 - $F_{1y} = 40 \text{ H};$
 - 2) $F_{2y} = 60 \text{ H}$:
 - 3) $F_{3y} = -100 \text{ H}$:
 - $F_{4y} = -120 \text{ H}.$
- В каком из указанных случаев плоская система сходящихся сил уравновешена?

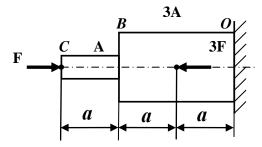
 - 1) $\sum F_{ix} = 40H$; $\sum F_{iy} = 40H$. 2) $\sum F_{ix} = 30H$; $\sum F_{iy} = 0H$.
 - $\sum_{i=1}^{n} F_{ix} = 0 \sum_{i=1}^{n} F_{iy} = 100H.$
 - $\sum_{i=1}^{n} F_{ix} = 0 \sum_{i=1}^{n} F_{iy} = 0$
- При каком значении угла β между силой и осью проекция силы равна нулю?
 - 1) $\beta = 0$;
 - 2) $\beta = 90^{\circ}$;
 - 3) $\beta = 180^{\circ}$.
- 31 Невесомый груз нагружен силой F, как показано на рисунке. Определите (воспользовавшись, если нужно, только калькулятором), под каким углом к брусу направлена реакция шарнира A.

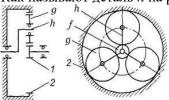

Ответ:

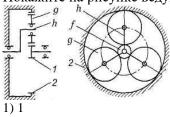
- a) 45°;
- б) 145°.

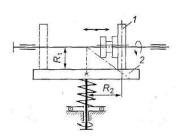


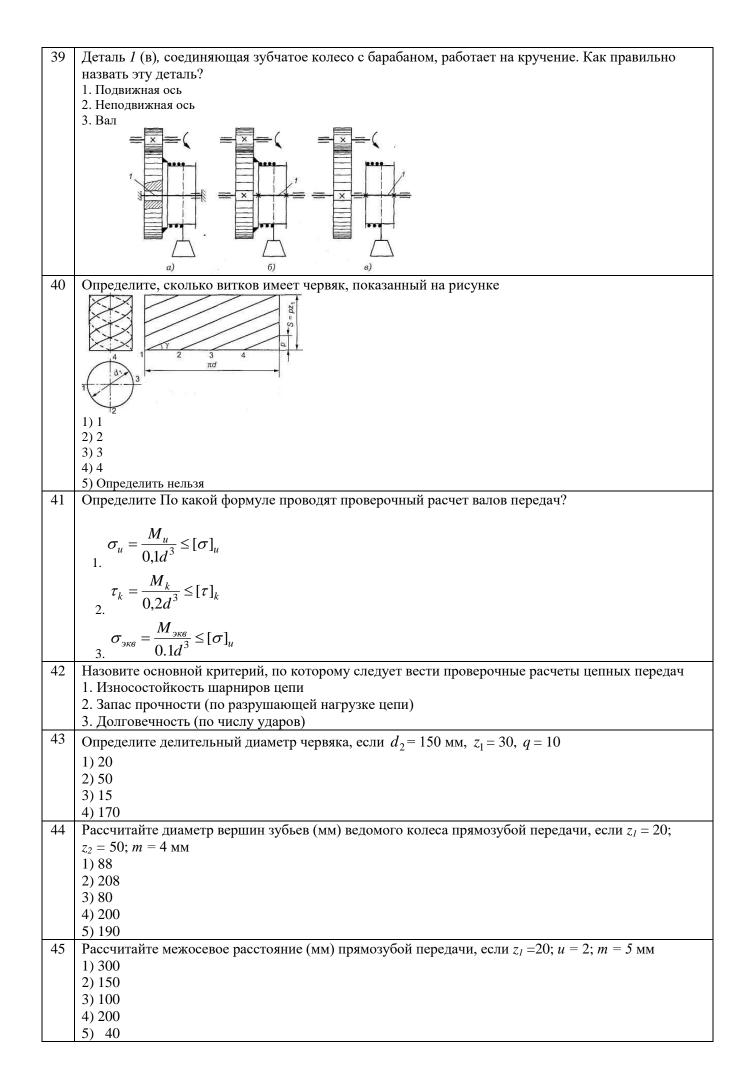

- 32 Наибольшее по модулю напряжение равно, полагая $F/A = \sigma_0$
 - 1) σ_0
 - 2) $\sigma_0/2$
 - 3) $3\sigma_0/2$
 - 4) $2\sigma_0$


- 33 Если F = 30 кH, $A_1 = 5$ см², l = 0.5 м, E = 200 ГПа, то удлинение стержня 1 (в мм) составит
 - 1) 0,1
 - 2) 0,2
 - 3) 0,3
 - 4) 0,5


- 34 Стержни кронштейна, изготовленные из одного материала с коэффициентом линейного расширения α нагреваются на ΔT градусов. При этом вертикальное перемещение узла B составит, полагая $\Delta l_0 = \alpha l \Delta T$.
 - 1) $0.5\Delta l_0$
 - 2) Δl_0
 - 3) $\sqrt{2}\Delta l_0$
 - 4) $2\Delta l_0$


- Считая перемещение влево положительным и полагая $\Delta l_0 = Fa/EA$, определите перемещение сечения B
 - 1) $-2\Delta l_{0}/3$
 - 2) $-\Delta l_0/3$
 - 3) $\Delta l_0/3$
 - 4) $2\Delta l_0/3$


Как называют деталь h на рисунке?


- 1. Водило
- 2. Сателлиты
- Покажите на рисунке ведущий вал зубчатой передачи

- 2) 2
- 3) q
- 4) h
- Как называется передача, показанная на рисунке?

- 1. Цилиндрическая фрикционная передача
- 2. Лобовой вариатор
- 3. Торовый вариатор
- 4. Вариатор с коническими катками

Оценочный лист

Вид аттестации <u>промежуточная завершающаяся</u> **Форма** дифференцированный зачет

Гр. <u>ТМ -21</u> ОПОП «Технология машиностроения»

ФИО

Уровни деятельности	Критерии оценки	Методы оценки	Баллы
Эмоционально- психологический	1. Демонстрация знания и понимания теории учебной дисциплины «Техническая механика» (выбирает правильный вариант ответа - тестовые задания с 1 по 20)	Сопоставление с эталоном теста ¹	от 0 до 10
	1. Демонстрация знания и понимания теории учебной дисциплины «Техническая механика» (формулирует определение, основное понятие - тестовые задания с 21 по 24)	Сопоставление с эталоном теста ²	от 0 до 4
Регулятивный	2. Определяет данные для расчета механических передач (выбирает правильный вариант ответа - тестовые задания с 41 по 45)	Сопоставление с эталоном теста ²	от 0 до 5
Социальный	3. Читает кинематические схемы (выбирает правильный вариант ответа - тестовые задания с 36 по 40)	Сопоставление с эталоном теста ²	от 0 до 5
Аналитический	4. Определяет напряжения в конструкционных элементах (выбирает правильный вариант ответа - тестовые задания с 25 по 35)	Сопоставление с эталоном теста ²	от 0 до 11
Самосовершен ствование	5. Реализовывает полученные теоретические знания в решении практических заданий (за скорость и качество выполнения практической работы (2 балла)	Оценка по критериям ³	от 0 до 2

 $^{^{1}}$ - тестовые задания с 1-го по 20-ое. Каждый правильный ответ тестовых заданий оценивается в 0,5 баллов. Максимальное количество баллов за правильные ответы -10;

Максимальное количество баллов за правильные ответы – 25;

Максимальное количество баллов за экзаменационный тест – 37 баллов.

Перевод количества баллов в оценку за экзамен

Количество баллов	Оценка
37 - 36	5 (отлично)
35 - 32	4 (хорошо)
31 - 27	3 (удовлетворительно)
менее 26	2 (неудовлетворительно)

² - тестовые задания с 21-го по 45-ое. Каждый ответ тестовых заданий оценивается от 0 до 1 балла:

^{- 0} баллов за неправильный ответ/отсутствие ответа;

^{- 0,5} баллов за частично правильный ответ;

^{- 1} балл за правильный ответ.

 $^{^3}$ - Дополнительные баллы за умение применять теоретические знания в решениях практических задач (можно получить за скорость и качество выполнения тестовых заданий) — от 0 до 2 баллов.

Перечень вопросов для подготовки к экзамену

- 1. Основные понятия теоретической механики и аксиомы статика
- 2. Связи и их реакции. Аксиома связи. Типы связей
- 3. Плоская система сил. Геометрический способ сложения сил
- 4. Момент силы относительно точки. Пара сил. Свойства пары сил
- 5. Приведение плоской системы сил к заданному центру. Частные случаи приведения
- 6. Плоская система сил. Условия равновесия
- 7. Законы трения. Трение скольжения. Трение качения
- 8. Пространственная система сил. Теорема о приведении пространственной системы сил к заданному центру
- 9. Определение центра тяжести. Способы определения центров тяжести
- 10. Кинематика точки. Способы задания движения материальной точки
- 11. Законы движения твердого тела. Способы задания движения материальной точки
- 12. Скорость точки. Ускорение точки Частные случаи движения материальной точки
- 13. Поступательное движение. Вращательное движение относительно неподвижной точки
- 14. Плоское движение твердого тела. Мгновенный центр скоростей. Преобразование движений
- 15. Законы динамики
- 16. Силы, действующие на точки механической системы
- 17. Работа силы. Мощность. Коэффициент полезного действия
- 18. Основные понятия теории сопротивления материалов
- 19. Растяжение и сжатие. Закон Гука
- 20. Удлинение стержня. Построение эпюр
- 21. Диаграмма растяжения. Относительная поперечная деформация
- 22. Основные механические характеристики материалов
- 23. Расчеты на прочность при растяжении и сжатии
- 24. Срез и смятие. Напряжения и деформации при сдвиге (срезе)
- 25. Кручение. Построение эпюр
- 26. Прямой поперечный изгиб. Геометрические характеристики поперечного сечения
- 27. Анализ внутренних силовых факторов. Правило определения знака для поперечных сил
- 28. Построение эпюр изгибающих моментов и поперечных сил
- 29. Устойчивость при осевом нагружении стержня
- 30. Расчет бруса на совместное действие кручения и изгиба
- 31. Основные элементы машины: детали, узлы, механизмы. Кинематические пары, кинематические цепи. Чтение условных обозначений кинематики
- 32. Работоспособность и критерии работоспособности машин
- 33. Детали вращательного движения: валы и оси
- 34. Корпусные детали. Материалы корпусных деталей
- 35. Пружины и рессоры: материалы, характеристики, назначение
- 36. Неразъемные соединения: характеристика, назначение
- 37. Разъемные соединения: характеристика, назначение
- 38. Резьбовые соединения: детали соединения, виды резьб, характеристики, назначение
- 39. Клиновое соединение: эксплуатационные характеристики, назначение
- 40. Соединение штифтами: классификация штифтов по назначению, назначение
- 41. Шпоночные и шлицевые соединения: эксплуатационные характеристики, назначение, материал шпонок
- 42. Подшипники: типы подшипников, эксплуатационные характеристики, назначение
- 43. Классификация муфт по назначению. Нерасцепляемые муфты. Управляемые и автоматические муфты
- 44. Фрикционные передачи: конструктивные особенности, назначение, достоинства и недостатки
- 45. Ременные передачи: назначение, достоинства и недостатки
- 46. Зубчатые передачи конструктивные особенности, назначение, достоинства и недостатки
- 47. Основные элементы зубчатого колеса. Материалы зубчатых колес

- 48. Винт гайка качения: конструктивные особенности, назначение
- 49. Червячные передачи: назначение, достоинства и недостатки
- 50. Цепные передачи: назначение, достоинства и недостатки, материалы цепей
- 51. Винт-гайка скольжения: конструктивные особенности, назначение
- 52. Реечные передачи конструктивные особенности, назначение
- 53. Кривошипно-шатунные механизмы: конструктивные особенности, назначение
- 54. Кулисные механизмы: конструктивные особенности, назначение
- 55. Винтовые механизмы: конструктивные особенности, назначение

Перечень умений для выполнения практических заданий

- 1. Определять данные для расчета механических передач. Производить расчеты механических передач
- 2. Составлять уравнения равновесия сил для определения внутренних сил
- 3. Определять напряжения в конструкционных элементах
- 4. Читать элементы кинематических схем

ИНСТРУКЦИЯ

для обучающихся к выполнению самостоятельных работ

Самостоятельная работа - обязательная часть Рабочей программы учебной дисциплины «Техническая механика», которая выполняется обучающимися по заданию преподавателя, но без его непосредственного участия, т.е. внеаудиторно (дома).

Самостоятельная работа обучающихся проводится с целью систематизации и закрепления полученных теоретических знаний и практических умений на уроках; углубления и расширения теоретических знаний; формирования умений использовать учебную, справочную и специальную литературу.

Темы и рекомендации к выполнению самостоятельной работы

Наименование темы	Тема	Вид выполнения работы
учебной дисциплины	самостоятельной работы	(что рекомендовано сделать)
Тема 1. Теоретическая ме- ханика	Теоремы об изменении количества движения материальной точки и механической системы	Проработать учебный материал и написать конспекты §1.18. (учебник Вереина Л.И. «Техническая механика» стр. 74)
	Теоремы об изменении момента количества движения материальной точки	Проработать учебный материал и написать конспекты §1.19. (учебник Вереина Л.И. «Техническая механика» стр. 79)
	Теоремы об изменении кинетического момента механической системы	Проработать учебный материал и написать конспекты §1.20. (учебник Вереина Л.И. «Техническая механика» стр. 80)
	Теоремы об изменении кинетической энергии материальной точки	Проработать учебный материал и написать конспекты §1.21. (учебник Вереина Л.И. «Техническая механика» стр. 82)
	Дифференциальные уравнения поступательного движения твердого тела	Проработать учебный материал и написать конспекты §1.22. (учебник Вереина Л.И. «Техническая механика» стр. 83)
	Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси	Проработать учебный материал и написать конспекты §1.23. (учебник Вереина Л.И. «Техническая механика» стр. 84)
Тема 2. Сопротивление материалов	Определение перемещений при изгибе	Проработать учебный материал и написать конспекты §2.8. (учебник Вереина Л.И. «Техническая механика» стр. 126)
•	Теория предельных напряженных состояний	Проработать учебный материал и написать конспекты §2.9. (учебник Вереина Л.И. «Техническая механика» стр. 132)
Тема 3. Детали машин и ме- ханизмов	Пружины и рессоры Неразъемные соединения дета- лей	Используя учебник Вереина Л.И. «Техниче- ская механика» (раздел 3) и ресурсы Интер- нета создать слайды с описанием или под-
	Разъемные соединения деталей Винт-гайка скольжения	готовить презентацию или доклад- сообщение на предложенные темы
	Винт-гайка качения	
	Реечные передачи Кривошипно-шатунные меха- низмы	
	Кулисные механизмы Специальные виды термической	
	обработки Твердосплавные напаиваемые пластины для режущего инструмента	

Конспекты выполняются аккуратно в рабочей тетради по изучаемой дисциплине.

Презентации, доклады/сообщения сдаются преподавателю на проверку, если нет замечаний к выполненной работе, обучающемуся предлагается выступить с докладом/сообщением (демонстрацией презентации) перед группой.

Если имеются замечания к выполненной работе, обучающийся их исправляет, только после этого ему предлагается публичная защита своей работы.

Каждая выполненная работа оценивается по 5-ти бальной шкале.